Application of topology optimization design and embedded technology in 3D printing
2024-07-11[1] | Lu P H, Li D C. Development of the additive manufacturing (3D printing) technology. Mach Build Autom, 2013, 42(4): 1 doi: 10.19344/j.cnki.issn1671-5276.2013.04.001卢秉恒, 李涤尘. 增材制造(3D打印)技术发展. 机械制造与自动化, 2013, 42(4): 1 doi: 10.19344/j.cnki.issn1671-5276.2013.04.001 |
[2] | Ni X Q, Kong D C, Wen Y, et al. Influence factors and improvement methods on the porosity of 3D printing metal materials. Powder Metall Technol, 2019, 37(3): 163 doi: 10.19591/j.cnki.cn11-1974/tf.2019.03.001倪晓晴, 孔德成, 温莹, 等. 3D打印金属材料中孔隙率的影响因素和改善方法. 粉末冶金技术, 2019, 37(3): 163 doi: 10.19591/j.cnki.cn11-1974/tf.2019.03.001 |
[3] | Liu Z Y, Zhao B B, Li L J, et al. Research progress of metal materials for 3D printing technology. Powder Metall Ind, 2020, 30(2): 83 doi: 10.13228/j.boyuan.issn1006-6543.20180139柳朝阳, 赵备备, 李兰杰, 等. 金属材料3D打印技术研究进展. 粉末冶金工业, 2020, 30(2): 83 doi: 10.13228/j.boyuan.issn1006-6543.20180139 |
[4] | Wang Y, Liu Y M, Liu J W, et al. Research progress on numerical simulation of metal additive-manufacturing process. Powder Metall Technol, 2022, 40(2): 179王岩, 刘雨萌, 刘江伟, 等. 金属增材制造数值模拟研究进展. 粉末冶金技术, 2022, 40(2): 179 |
[5] | Zhang G X, Liu S F, Yang X, et al. Research progress on preparation of biological implant materials by additive manufacturing. Powder Metall Technol, 2019, 37(4): 312 doi: 10.19591/j.cnki.cn11-1974/tf.2019.04.012张光曦, 刘世锋, 杨鑫, 等. 增材制造技术制备生物植入材料的研究进展. 粉末冶金技术, 2019, 37(4): 312 doi: 10.19591/j.cnki.cn11-1974/tf.2019.04.012 |
[6] | Liu S T, Li Q H, Chen W J, et al. Combining topology optimization and additive manufacturing: an integrated approach to design and manufacturing. Aeron Manuf Technol, 2017(10): 26刘书田, 李取浩, 陈文炯, 等. 拓扑优化与增材制造结合: 一种设计与制造一体化方法. 航空制造技术, 2017(10): 26 |
[7] | Zhu J H, Zhang W H, Xia L. Topology optimization in aircraft and aerospace structures design. Arch Comput Meth Eng, 2016, 23: 595 doi: 10.1007/s11831-015-9151-2 |
[8] | Ge H Y, Luo M X, Zhang J H, et al. Hardware development of embedded control system for 3D printing. Ind Control Comput, 2018, 31(1): 9 doi: 10.3969/j.issn.1001-182X.2018.01.004葛红宇, 罗茂炫, 张建华, 等. 3D打印嵌入式工业控制系统硬件设计. 工业控制计算机, 2018, 31(1): 9 doi: 10.3969/j.issn.1001-182X.2018.01.004 |
[9] | Li J. Application and research progress of computer simulation used in powder metallurgy process. Powder Metall Technol, 2021, 39(4): 366 doi: 10.19591/j.cnki.cn11-1974/tf.2021060001李静. 计算机仿真在粉末冶金过程的应用及研究进展. 粉末冶金技术, 2021, 39(4): 366 doi: 10.19591/j.cnki.cn11-1974/tf.2021060001 |
[10] | Liu S T, Hu R, Li Q H, et al. Topology optimization-based lightweight primary mirror design of a large-aperture space telescope. Appl Opt, 2014, 53(35): 8318 doi: 10.1364/AO.53.008318 |
[11] | Gao J C. Structural Topology Optimization Considering the Overhang Constraint in Additive Manufacturing [Dissertation]. Dalian: Dalian University of Technology, 2019高进城. 考虑增材制造中悬空角度约束的结构拓扑优化[学术论文]. 大连: 大连理工大学, 2019 |
[12] | Wang R, Yang W Q. SLM technology and topology optimization for lighter aerospace components. Mod Manuf Eng, 2018(12): 24 doi: 10.16731/j.cnki.1671-3133.2018.12.005王仁, 杨伟群. 选择性激光熔化技术及面向航空组件的拓扑优化研究. 现代制造工程, 2018(12): 24 doi: 10.16731/j.cnki.1671-3133.2018.12.005 |
[13] | Luo Y, Du P, Zhu L J, et al. A case study of topology optimization design based on Inspire software. Manuf Technol Mach Tool, 2021(11): 31 doi: 10.19287/j.cnki.1005-2402.2021.11.005罗勇, 杜平, 朱丽君, 等. 基于Inspire软件的拓扑优化设计案例分析. 制造技术与机床, 2021(11): 31 doi: 10.19287/j.cnki.1005-2402.2021.11.005 |
[14] | Wang L X, Du W F, Zhang F, et al. Topology optimization and 3D printing manufacturing of four-branch cast-steel joint. J Build Struct, 2021, 42(6): 37 doi: 10.14006/j.jzjgxb.2020.0297王龙轩, 杜文风, 张 帆, 等. 四分叉铸钢节点拓扑优化及3D打印制造. 建筑结构学报, 2021, 42(6): 37 doi: 10.14006/j.jzjgxb.2020.0297 |
[15] | Xu W P, Wang W M, Li H, et al. Topology optimization for minimal volume in 3D printing. J Comput Res Develop, 2015, 52(1): 38 doi: 10.7544/issn1000-1239.2015.20140108徐文鹏, 王伟明, 李航, 等. 面向3D打印体积极小的拓扑优化技术. 计算机研究与发展, 2015, 52(1): 38 doi: 10.7544/issn1000-1239.2015.20140108 |
[16] | Wang F W, Sigmund O, Jensen J S. Design of materials with prescribed nonlinear properties. J Mech Phys Solids, 2014, 69: 156 doi: 10.1016/j.jmps.2014.05.003 |
[17] | Clausen A, Wang F W, Jensen J S, et al. Topology optimized architectures with programmable Poisson's ratio over large deformations. Adv Mater, 2015, 27: 5523 doi: 10.1002/adma.201502485 |
[18] | Shi G H, Guan C Q, Quan D L, et al. An aerospace bracket designed by thermo-elastic topology optimization and manufactured by additive manufacturing. Chin J Aeron, 2020, 33(4): 1252 doi: 10.1016/j.cja.2019.09.006 |
[19] | Tang Y L, Dong G Y, Zhou Q X, et al. Lattice structure design and optimization with additive manufacturing constraints. IEEE Trans Autom Sci Eng, 2018, 15(4): 1546 doi: 10.1109/TASE.2017.2685643 |
[20] | Zhu J H, Zhou H, Wang C, et al. Status and future of topology optimization for additive manufacturing. Aeron Manuf Technol, 2020, 60(10): 24 doi: 10.16080/j.issn1671-833x.2020.10.024朱继宏, 周 涵, 王 创, 等. 面向增材制造的拓扑优化技术发展现状与未来. 航空制造技术, 2020, 60(10): 24 doi: 10.16080/j.issn1671-833x.2020.10.024 |
[21] | Gao C H, Wu W H, Zhang L. Research status of additive manufacturing technology used for high temperature titanium alloys and titanium matrix composites. Powder Metall Technol, 2023, 41(1): 55高楚寒, 吴文恒, 张亮. 高温钛合金及钛基复合材料增材制造技术研究现状. 粉末冶金技术, 2023, 41(1): 55 |
[22] | Liu Y J, Ren D C, Li S J, et al. Enhanced fatigue characteristics of a topology-optimized porous titanium structure produced by selective laser melting. Add Manuf, 2020: 101060 |
[23] | Wu W H, Wu K Q, Xiao Y F, et al. Effect of atomization pressure on the properties of 316L stainless steel powders used in 3D printing. Powder Metall Technol, 2017, 35(2): 83 doi: 10.3969/j.issn.1001-3784.2017.02.001吴文恒, 吴凯琦, 肖逸凡, 杨启云. 气雾化压力对3D打印用316L不锈钢粉末性能的影响. 粉末冶金技术, 2017, 35(2): 83 doi: 10.3969/j.issn.1001-3784.2017.02.001 |
[24] | Liang X, Du P, Zhu L J, et al. Analysis of topology optimization design module for additive manufacturing. Manuf Technol Mach Tool, 2021(5): 76 doi: 10.19287/j.cnki.1005-2402.2021.05.009梁雄, 杜平, 朱丽君, 等. 面向增材制造的拓扑优化设计模块分析. 制造技术与机床, 2021(5): 76 doi: 10.19287/j.cnki.1005-2402.2021.05.009 |
[25] | Li J. Development of 3D Printing Upper Computer Software Based on ARM and Research of Filling Algorithms [Dissertation]. Xi’an: Xi’an University of Technology, 2019李佳. 基于ARM的3D打印上位机软件开发及填充算法研究[学术论文]. 西安: 西安理工大学, 2019 |
[26] | Wang S Z, Shu Z B, Li J. Design and implementation of control system for FDM 3D printer based on ARM. Chin J Electron Dev, 2017, 40(5): 1324王苏洲, 舒志兵, 李俊. 基于ARM的桌面型3D打印机控制系统的设计与优化. 电子器件, 2017, 40(5): 1324 |
[27] | Kong M R, Wang H Y, Jiao Y Y, et al. Development and design of 3D control system for orthodontics based on embedded system. Electron Sci Technol, 2017, 30(7): 114 doi: 10.16180/j.cnki.issn1007-7820.2017.07.031孔明茹, 王海艳, 教莹莹, 等. 基于嵌入式的口腔正畸3D打印控制系统设计. 电子科技, 2017, 30(7): 114 doi: 10.16180/j.cnki.issn1007-7820.2017.07.031 |
[28] | Feng Q X, A Z W. Design of multi-platform rapid prototyping software. Manuf Technol Mach Tool, 2014(4): 33 doi: 10.3969/j.issn.1005-2402.2014.04.014冯清秀, 阿占文. 多平台快速成型软件设计. 制造技术与机床, 2014(4): 33 doi: 10.3969/j.issn.1005-2402.2014.04.014 |